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Abstract

We analyzethe thickness-correctionstothe Nambu walls,focussing

on recentdiscussionson the subject.The presence of correctionsde-

pending on the Gaussian curvatureand itsimplicationsare reviewed.

We also highlight the consistency of the calculations, its limitations
and the connection between alternative derivations.
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This letter is addressed to the recent controversy in the literature con-

cerning the thickness corrections to the Nambu action for topological defects.

The thickness correction problem was originally analyzed by Gregory et. all

[1], with the conclusion that the only corrections to the Nambu action are of

second order in the thickness and proportional the Ricci curvature, R. In a

subsequent paper, we discussed the problem in a slightly more general case

and we showed that, if some properties of the static and plane solution are

not assumed at the beginning, (as the original papers implicitly do), then ad-

ditional contributions to the Nambu action, related to the mean curvature,

arise [2]. More recently, another paper [3] addressed the same problem, as-

serting the correctness of Gregory's result. On the light of this recent claim,

we want to clarify our results, stressing its basic assumptions and consistency,

and also improving the analysis of an obscure point in our previous work.

As in [2], we consider topological solutions of a scalar field ¢ with potential

V(¢) and degenerate vacuum states. In the case of walls, ¢ will assume

different vacuum states, ¢1 and _b2, on each side of the wall. We consider the

solution concentrated on a surface, and, for V(¢) = )_(¢2 _ _)2)2, this surface

may be characterized by ¢ = 0. In a more general case, this surface may

be identified by ¢ = (¢1 + ¢2)/2 and Y(¢) does not need to be symmetric

around this point.

A Gaussian coordinate system is constructed, based on this surface. Points

in the space-time are localized by:

= X"(o A)+  iY '(oA) (1)

where a A are coordinates on the surfece, X_(a A) describes the wall surface,
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N_(a A) are the normal vectors to the surface and _i are coordinates along

these normal directions. The derivatives of N_(a A) are given by the Gauss-

Weingarten equation

N p ^CD_ v'p "i,A = Y uACi"X,D + gkJAkiAN_

where bAci is the second fundamental form and AkiA is the twisting vector.

The metric is projected in this new coordinate system to give:

GuudZUdZ u -- gABdaAda B + 2gAjdaAd_ j + gijd_id_ j (2)

" with

(3)

In this new system,the action may be written as

(4)

S = f y/'_£ dp+lo "dm_

with £ = ½0u¢0u¢ - V(¢) and the equation of motion is:

v_o,(C=_g'%¢) + 1

__ OV+ 0_(Vr:-ggA_0B¢)+ 0-U

(5)

------_0_(V_g_j0_¢)+

=0 (6)
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1 Approximation procedures

Having in mind only solutions concentrated around _ = 0, we consider ¢ in

the form:

¢ = ¢0(_')+ ¢1(_')+ ¢2(_',oA) (7)

with ¢1 of the order of e and ¢2 of the order of e2.

Because of the fast decreasing behavior of 0/¢ and V(¢) for _ > e, terms

like _0i¢ and _V(¢) are one order of correction higher than 0i¢ and V(¢).

This is all we will be assuming about the solution for ¢. There is no reason

forcing us to consider oioi(_ >> 0i¢ (or oioi_) "_ e -2, 0i¢ _ e -1 ). Had

we in mind only a static plane wall solution, this would certainly be true,

but there is no way to show that a solution like (7), restricted to satisfy

_0i¢ << 0i¢, must obey this extra requirement, and we must be allowed to

proceed, consistently, without taking it.

From (3)-(4) and (7) replaced in (6), we obtain an equation of motion

which may be separated into the zero order and the first order equations:

and

0vj°'°*CO+ _0_¢° + T_ o=o (s)

o=v[ =0 (9)
o,o' 1+ g°o' l +K j¢'wco+.,1

where J0 indicates evaluation at ¢ = Co, K°i = gABbAsi is the mean curvature

and I(_i = --bABibA_ is the gaussian curvature. From the Gauss-Weingarten

equation, we see that K_/and K/lj are related to the gradient of the normal

vectom, N_'. Since we have not yet solved the evolution equation for the
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surface,we do not know, at this point, the valuesof K ° and K_j, so that we

can not yet solve (8) and (9). This was missing in our first analysis of ref.[2],

but, in fact, it is not essential to know CO and ¢1 at this stage as it is possible

to proceed without the use of these explicit solutions.

An important issue here is whether or not the expansion in the equation

of motion should agree with the expansion in the action. As we understand,

the expansion must be made in the equation of motion, so that it is con-

sistent with the fact that the fundamental object of the theory is the scalar

¢. The wall, and all aproximations that come with it, appear as features

of some solutions of the equations of motion, rather than a feature of the

action. Besides, to make the expansion in the action requires a change on

the dynamical variables in the variational principle, which must be used as

= 0 and _ = 0. A high price must be paid to do this, as parts of the

original action (7) are completely ignored in this procedure 1. In the effort

to make the expansion in the action consistent, one ends up throwing away

parts of the action that would otherwise affect the evolution of the system.

This means that the expansion in the action is, in fact, inconsistent, and

must be avoided.

So, back to the equations (8), once the solution for Co is, formally, iden-

tified, the next step is to obtain an effective Lagrangean to describe the

evolution of the surface _ = 0. Since we now want to explore only the evolu-

tion X_(_ A) (we are not looking for solution Co(_i) and (_1(_i)), the equation

will include only derivatives in 6 `4 , which do not interfere with the expan-

sion in _. At this stage, we may safely expand the action in powers of e,

1Like the last term in the r.h.s, of (20) ref. [3] which neither contributes to the first

order equation, because it does not depend on _bl, nor it appears in the _0 equation because

it is of higher order.
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and using (7-9), we separatethe e-dependence from the a-dependence and,

formally, integrate out the _-coordinates. This procedure leaves behind only

constant (a-independent) factors which depend on Co and Cx. Without going

into all the details, we just write down the final result for walls, as in [2],

eq.(31):

S = _o f _[-'_ [1 +
_'lg° - _'--_n + ;'2K]
#o I_o #o J

dn+la. (10)

where

1

= 5 f d_ _0JCo¢__2

and K ° -- _TABbAB, K -- bABb AS. Since there is only one normal direction in

the case of walls, the indices i, j in _ and K were omitted.

Another important point must be stressed here. We could use partial

integration to obtain equivalent expressions for #. However, we must also

notice that the use of partial integrations never changes any integral; it just

provides alternative expressions for which the power counting in e can not

be immediately readable with the only assumptions we have, namely (7) and

The zero order term in (10) reproduces the Nambu equation, giving:

K ° = _ABbA8 = 0 (11)



With this result, we may now go back to (8-9) and effectively solve for ¢0

and ¢x, a procedure similar to the one advocated by R. Gregory et all [1].

Since I( ° does not depend on _rA, at least up to lower order, the requirement

(7) is self-consistent. Note that, at this point, the zero order equation, which

can now be solved, agrees with the equations found before in the literature

[1,3]. The difference remains only in the ¢1 equation, and it arises because

of the weaker conditions we start with. As compared with [3], the exclusion

of the last term of the action, (eq. (20) of [3]) from the equations of motion,

as mentioned before, is also related to this difference.

As for the first order contribution, we must note that if V(¢) is symmet-

ric, the equation (8), with the apropriate boundary conditions, has an odd

solution for which #_ = 0 and no first order correction appears. Besides, even

when #1 # 0, this first order contribuition in e will only be important for

walls that are not spatially flat. As an axample, we compare the evolution

of a plane and a cylindrical wall in the presence of the first order term.

2 Plane and the cylindrical walls

We will consider walls produced by a potential V(¢) which is not symmetric

between ¢1 and ¢2, the vacuum states on each side of the wall. In this case,

#_ # 0, and a first order contribution to the Nambu action will be present.

For spatially flat walls, we consider X _ = (t, x, y, z(t) ), the a A coordinates

are identified with r,x, y and dr = _/T-S-ffdt. The only normal vector is

given by:

N" = (

Using I_ = gABbAB and the definition of bAB, bAB = X_N_G,_, we have:
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K ° =
(1 - _2)3/5

The Nambu action requires the plane wall to move with _ = 0, as expected.

When the first order correction is considered, we get:

The first order contribution turns out to be a total derivative which gives no

contribuition to the equation of motion. So, any possible correction to the

Nambu action for plane walls will be at least of order e5.

To study cylindrical walls, we use X" = (t, r(t) cos(0), r(t) sin(0), z), the

aA-coordinates are identified with v, z,8 and dr = Vrl"- ÷Sdt. The only

normal vector is given by:

y # .m_
1

_---_(÷, cos(0),sin(0),0)
Vt-r"

Following the same steps used for the plane wall, we compute K°:

K ° = +
(1 - ÷5)3/5 r(1 _÷5)115

Making K ° = 0, we have the usual Nambu equation for cylindric walls. By

including the first order correction, we now obtain:

S= #ofdtdOdz r l_"Z-_-_2 [1 + #1 /_#o (1 - ÷5)3/5

and the equation of motion with first order correction is:

(13)
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=0 (14)
(1 - ÷2) r r(1 -/.2)3/2

Using the zero order equation, we may say that, roughly, i: ,-_ r -1. So,

the first order contribution will be basically ,,_ r -2, to be compared with the

other terms in (14), which are ,,_ r -I. This new correction, which is already

first order in e, becames increasingly small when the limit r ---* c¢ is also

considered.

Finally we would like to comment on the limitations of any of these meth-

ods. Right from the start, the evolution of a field configuration, ¢, is arti-

ficially splitted into two pieces: the evolution of ¢(_) and the e_colution of

the surface ¢ = 0. These pieces are, in fact, deeply interlocked and the split

is promoted by the assumption that both Co and Ct depend only on _i. By

construction, we may only be sure that CJ_=0 = 0 and there is no way, a

priori, to make sure that the aA-independence may be extended to _ _t 0. As

it turns out, the lowest order equation for the evolution of the defect makes

N O = 0, which is enough to garantee that Co = CO(_) is a self-consistent

choice. Any correction to the Nambu action will be of higher order and will

not affect (8). For ¢1, solution of (9), the prospect is not so good. Since ¢1

only affects the second order corrections to the Nambu action, we may safely

consider K ° = 0 to solve (9). Even so, K_ is not necessarily aA-independent,

thus invalidating the general use of ¢1 = ¢1(_). However, in the same way

that the static and plane walls are considered as good local approximation

for more general solutions, we may also consider, as a better approximation,

that the defect is locally described by a wall with constant K ° and K, a

higher order tangent manifold to the defect surface. It must be kept in mind

that this is just an approximation, whose domain of validity depend on each



case. For plane walls, K ° = 0 ==_ K - 0, and the case is trivial. For

cylindric and spheric walls, we have

/:2 C
K= +

(1 - _2)3 r2(1 _ ÷2)

with C = 1 for cylindric walls and C = 2 for spherical walls. So, the approx-

imation that assumes both K ° and K as a-independent may be consider a

good approximation when r is large enough or when ÷ is small. The larger

r or the smaller ÷, the better the approximation will do. Even though this

procedure does not cover all possible cases of interest, it may provide im-

portant information about the evolution of the defect. The existence of a

rigidity term [4], which would affect the evolution of a defect originally with

÷ -,_ 0, may be analyzed within this framework, predicting whether or not

the defect will straighten.

In conclusion, the derivation of the effective action for defects must be

seen as an approximation and, as such, must be used with discrimination.

Used correctly, it may provide answer for some questions concerning the

evolution of the defect. However, to be useful, it is important that the

derivation is done with the least possible number of assumptions to avoid

the influence from the trivial case of plane and static defects. With the

assumption that ¢ = ¢0(_ i) + ¢1 (_i) + ¢2(_i, o.A) and for the specific potential

V(¢) = A(¢ 2 - v2) 2, this result states that there is no first order correction

and there are two second order corrections: one proportional to the Ricci

scalar R and another proportional to the Gaussian curvature K.
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